Robust and efficient intrusion detection systems

نویسنده

  • Kapil Kumar Gupta
چکیده

INTRUSION Detection systems are now an essential component in the overall network and data security arsenal. With the rapid advancement in the network technologies including higher bandwidths and ease of connectivity of wireless and mobile devices, the focus of intrusion detection has shifted from simple signature matching approaches to detecting attacks based on analyzing contextual information which may be specific to individual networks and applications. As a result, anomaly and hybrid intrusion detection approaches have gained significance. However, present anomaly and hybrid detection approaches suffer from three major setbacks; limited attack detection coverage, large number of false alarms and inefficiency in operation. In this thesis, we address these three issues by introducing efficient intrusion detection frameworks and models which are effective in detecting a wide variety of attacks and which result in very few false alarms. Additionally, using our approach, attacks can not only be accurately detected but can also be identified which helps to initiate effective intrusion response mechanisms in real-time. Experimental results performed on the benchmark KDD 1999 data set and two additional data sets collected locally confirm that layered conditional random fields are particularly well suited to detect attacks at the network level and user session modeling using conditional random fields can effectively detect attacks at the application level. We first introduce the layered framework with conditional random fields as the core intrusion detector. Layered conditional random field can be used to build scalable and efficient network intrusion detection systems which are highly accurate in attack detection. We show that our systems can operate either at the network level or at the application level and perform better than other well known approaches for intrusion detection. Experimental results further demonstrate that our system is robust to noise in training data and handles noise better than other systems such as the decision trees and the naive Bayes. We then introduce our unified logging framework for audit data collection and perform user session modeling using conditional random fields to build

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moving dispersion method for statistical anomaly detection in intrusion detection systems

A unified method for statistical anomaly detection in intrusion detection systems is theoretically introduced. It is based on estimating a dispersion measure of numerical or symbolic data on successive moving windows in time and finding the times when a relative change of the dispersion measure is significant. Appropriate dispersion measures, relative differences, moving windows, as well as tec...

متن کامل

A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System

In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...

متن کامل

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

تولید خودکار الگوهای نفوذ جدید با استفاده از طبقه‌بندهای تک کلاسی و روش‌های یادگیری استقرایی

In this paper, we propose an approach for automatic generation of novel intrusion signatures. This approach can be used in the signature-based Network Intrusion Detection Systems (NIDSs) and for the automation of the process of intrusion detection in these systems. In the proposed approach, first, by using several one-class classifiers, the profile of the normal network traffic is established. ...

متن کامل

A New Intrusion Detection System to deal with Black Hole Attacks in Mobile Ad Hoc Networks

By extending wireless networks and because of their different nature, some attacks appear in these networks which did not exist in wired networks. Security is a serious challenge for actual implementation in wireless networks. Due to lack of the fixed infrastructure and also because of security holes in routing protocols in mobile ad hoc networks, these networks are not protected against attack...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009